Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.358
1.
Sci Rep ; 14(1): 10187, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702381

Neurexins (Nrxns) are critical for synapse organization and their mutations have been documented in autism spectrum disorder, schizophrenia, and epilepsy. We recently reported that conditional deletion of Nrxn2, under the control of Emx1Cre promoter, predominately expressed in the neocortex and hippocampus (Emx1-Nrxn2 cKO mice) induced stereotyped patterns of behavior in mice, suggesting behavioral inflexibility. In this study, we investigated the effects of Nrxn2 deletion through two different conditional approaches targeting presynaptic cortical neurons projecting to dorsomedial striatum on the flexibility between goal-directed and habitual actions in response to devaluation of action-outcome (A-O) contingencies in an instrumental learning paradigm or upon reversal of A-O contingencies in a water T-maze paradigm. Nrxn2 deletion through both the conditional approaches induced an inability of mice to discriminate between goal-directed and habitual action strategies in their response to devaluation of A-O contingency. Emx1-Nrxn2 cKO mice exhibited reversal learning deficits, indicating their inability to adopt new action strategies. Overall, our studies showed that Nrxn2 deletion through two distinct conditional deletion approaches impaired flexibility in response to alterations in A-O contingencies. These investigations can lay the foundation for identification of novel genetic factors underlying behavioral inflexibility.


Behavior, Animal , Mice, Knockout , Nerve Tissue Proteins , Transcription Factors , Animals , Mice , Nerve Tissue Proteins/genetics , Male , Neural Cell Adhesion Molecules/genetics , Gene Deletion , Maze Learning/physiology , Reversal Learning/physiology , Homeodomain Proteins/genetics , Hippocampus/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Conditioning, Operant
2.
Mol Brain ; 17(1): 16, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475840

Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.


Autism Spectrum Disorder , Cell Adhesion Molecules, Neuronal , Intellectual Disability , Membrane Proteins , Nerve Tissue Proteins , Animals , Mice , Autism Spectrum Disorder/genetics , Cell Adhesion Molecules , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cognition , Maze Learning , Social Change , Membrane Proteins/genetics , Membrane Proteins/metabolism
3.
Cell Cycle ; 23(3): 328-337, 2024 Feb.
Article En | MEDLINE | ID: mdl-38512812

OBJECTIVE: The aim of this study was to explore the effects of Ninjurin 2 (NINJ2) polymorphisms on susceptibility to coronary heart disease (CHD). METHODS: We conducted a case-control study with 499 CHD cases and 505 age and gender-matched controls. Five single nucleotide polymorphisms (SNPs) in NINJ2 (rs118050317, rs75750647, rs7307242, rs10849390, and rs11610368) were genotyped by the Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analysis to assess the association of NINJ2 polymorphisms and CHD risk-adjusted for age and gender. What's more, risk genes and molecular functions were screened via protein-protein interaction (PPI) network and functional enrichment analysis. RESULTS: Rs118050317 in NINJ2 significantly increased CHD risk in people aged more than 60 years and women. Rs118050317 and rs7307242 had strong relationships with hypertension risk in CHD patients. Additionally, rs75750647 exceedingly raised diabetes risk in cases under multiple models, whereas rs10849390 could protect CHD patients from diabetes in allele, homozygote, and additive models. We also observed two blocks in NINJ2. Further interaction network and enrichment analysis showed that NINJ2 played a greater role in the pathogenesis and progression of CHD. CONCLUSION: Our results suggest that NINJ2 polymorphisms are associated with CHD risk.


Cell Adhesion Molecules, Neuronal , Coronary Disease , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Humans , Female , Male , Polymorphism, Single Nucleotide/genetics , Cell Adhesion Molecules, Neuronal/genetics , Genetic Predisposition to Disease/genetics , Middle Aged , Coronary Disease/genetics , Case-Control Studies , Aged , Risk Factors , Genotype
4.
G3 (Bethesda) ; 14(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38447284

The cell-cell adhesion molecule Fasciclin II (Fas2) has long been studied for its evolutionarily conserved role in axon guidance. It is also expressed in the follicular epithelium, where together with a similar protein, Neuroglian (Nrg), it helps to drive the reintegration of cells born out of the tissue plane. Remarkably, one Fas2 protein null allele, Fas2G0336, demonstrates a mild reintegration phenotype, whereas work with the classic null allele Fas2EB112 showed more severe epithelial disorganization. These observations raise the question of which allele (if either) causes a bona fide loss of Fas2 protein function. The problem is not only relevant to reintegration but fundamentally important to understanding what this protein does and how it works: Fas2EB112 has been used in at least 37 research articles, and Fas2G0336 in at least three. An obvious solution is that one of the two chromosomes carries a modifier that either suppresses (Fas2G0336) or enhances (Fas2EB112) phenotypic severity. We find not only the latter to be the case, but identify the enhancing mutation as Nrg14, also a classic null allele.


Alleles , Animals , Phenotype , Chromosomes/genetics , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Mutation , Drosophila/genetics
6.
Acta Neuropathol Commun ; 11(1): 197, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38093390

In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.


Alzheimer Disease , Receptors, LDL , Humans , Alzheimer Disease/genetics , Apolipoproteins E/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism
7.
Elife ; 122023 Dec 04.
Article En | MEDLINE | ID: mdl-38047770

The joint storage and reciprocal retrieval of learnt associated signals are presumably encoded by associative memory cells. In the accumulation and enrichment of memory contents in lifespan, a signal often becomes a core signal associatively shared for other signals. One specific group of associative memory neurons that encode this core signal likely interconnects multiple groups of associative memory neurons that encode these other signals for their joint storage and reciprocal retrieval. We have examined this hypothesis in a mouse model of associative learning by pairing the whisker tactile signal sequentially with the olfactory signal, the gustatory signal, and the tail-heating signal. Mice experienced this associative learning show the whisker fluctuation induced by olfactory, gustatory, and tail-heating signals, or the other way around, that is, memories to multi-modal associated signals featured by their reciprocal retrievals. Barrel cortical neurons in these mice become able to encode olfactory, gustatory, and tail-heating signals alongside the whisker signal. Barrel cortical neurons interconnect piriform, S1-Tr, and gustatory cortical neurons. With the barrel cortex as the hub, the indirect activation occurs among piriform, gustatory, and S1-Tr cortices for the second-order associative memory. These associative memory neurons recruited to encode multi-modal signals in the barrel cortex for associative memory are downregulated by neuroligin-3 knockdown. Thus, associative memory neurons can be recruited as the core cellular substrate to memorize multiple associated signals for the first-order and the second-order of associative memories by neuroligin-3-mediated synapse formation, which constitutes neuronal substrates of cognitive activities in the field of memoriology.


Cell Adhesion Molecules, Neuronal , Neurons , Animals , Mice , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins , Synapses
8.
PLoS One ; 18(11): e0293526, 2023.
Article En | MEDLINE | ID: mdl-37910485

Liver sinusoidal endothelial cells (LSECs) are fenestrated endothelial cells with a unique, high endocytic clearance capacity for blood-borne waste macromolecules and colloids. This LSEC scavenger function has been insufficiently characterized in liver disease. The Glmpgt/gt mouse lacks expression of a subunit of the MFSD1/GLMP lysosomal membrane protein transporter complex, is born normal, but soon develops chronic, mild hepatocyte injury, leading to slowly progressing periportal liver fibrosis, and splenomegaly. This study examined how LSEC scavenger function and morphology are affected in the Glmpgt/gt model. FITC-labelled formaldehyde-treated serum albumin (FITC-FSA), a model ligand for LSEC scavenger receptors was administered intravenously into Glmpgt/gt mice, aged 4 months (peak of liver inflammation), 9-10 month, and age-matched Glmpwt/wt mice. Organs were harvested for light and electron microscopy, quantitative image analysis of ligand uptake, collagen accumulation, LSEC ultrastructure, and endocytosis receptor expression (also examined by qPCR and western blot). In both age groups, the Glmpgt/gt mice showed multifocal liver injury and fibrosis. The uptake of FITC-FSA in LSECs was significantly reduced in Glmpgt/gt compared to wild-type mice. Expression of LSEC receptors stabilin-1 (Stab1), and mannose receptor (Mcr1) was almost similar in liver of Glmpgt/gt mice and age-matched controls. At the same time, immunostaining revealed differences in the stabilin-1 expression pattern in sinusoids and accumulation of stabilin-1-positive macrophages in Glmpgt/gt liver. FcγRIIb (Fcgr2b), which mediates LSEC endocytosis of soluble immune complexes was widely and significantly downregulated in Glmpgt/gt liver. Despite increased collagen in space of Disse, LSECs of Glmpgt/gt mice showed well-preserved fenestrae organized in sieve plates but the frequency of holes >400 nm in diameter was increased, especially in areas with hepatocyte damage. In both genotypes, FITC-FSA also distributed to endothelial cells of spleen and bone marrow sinusoids, suggesting that these locations may function as possible compensatory sites of clearance of blood-borne scavenger receptor ligands in liver fibrosis.


Endothelial Cells , Liver , Mice , Animals , Endothelial Cells/metabolism , Ligands , Down-Regulation , Fluorescein-5-isothiocyanate/metabolism , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Hepatocytes/metabolism , Disease Models, Animal , Collagen/metabolism , Membrane Transport Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism
9.
Transl Psychiatry ; 13(1): 367, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38036526

Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and ß isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Octopamine/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Neurons/metabolism , Synapses/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
10.
Genes (Basel) ; 14(10)2023 09 28.
Article En | MEDLINE | ID: mdl-37895235

In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.


Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Cell Adhesion Molecules/metabolism , Immunoglobulins/genetics , Brain/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics
11.
Cell Rep ; 42(10): 113274, 2023 10 31.
Article En | MEDLINE | ID: mdl-37862170

The Contactin-associated protein 1 (Cntnap1) mouse mutants fail to establish proper axonal domains in myelinated axons. Human CNTNAP1 mutations are linked to hypomyelinating neuropathy-3, which causes severe neurological deficits. To understand the human neuropathology and to model human CNTNAP1C323R and CNTNAP1R764C mutations, we generated Cntnap1C324R and Cntnap1R765C mouse mutants, respectively. Both Cntnap1 mutants show weight loss, reduced nerve conduction, and progressive motor dysfunction. The paranodal ultrastructure shows everted myelin loops and the absence of axo-glial junctions. Biochemical analysis reveals that these Cntnap1 mutant proteins are nearly undetectable in the paranodes, have reduced surface expression and stability, and are retained in the neuronal soma. Postnatal transgenic expression of Cntnap1 in the mutant backgrounds rescues the phenotypes and restores the organization of axonal domains with improved motor function. This study uncovers the mechanistic impact of two human CNTNAP1 mutations in a mouse model and provides proof of concept for gene therapy for CNTNAP1 patients.


Charcot-Marie-Tooth Disease , Myelin Sheath , Humans , Mice , Animals , Myelin Sheath/metabolism , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Neuroglia/pathology , Disease Models, Animal , Ranvier's Nodes/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism
12.
Sci Rep ; 13(1): 12687, 2023 08 04.
Article En | MEDLINE | ID: mdl-37542090

Individuals with Autism Spectrum Disorder (ASD; autism) commonly present with gastrointestinal (GI) illness in addition to core diagnostic behavioural traits. The appendix, or cecum in mice, is important for GI homeostasis via its function as a key site for fermentation and a microbial reservoir. Even so, the role of the appendix and cecum in autism-associated GI symptoms remains uninvestigated. Here, we studied mice with an autism-associated missense mutation in the post-synaptic protein neuroligin-3 (Nlgn3R451C), which impacts brain and enteric neuronal activity. We assessed for changes in cecal motility using a tri-cannulation video-imaging approach in ex vivo preparations from wild-type and Nlgn3R451C mice. We investigated cecal permeability and neurally-evoked secretion in wild-type and Nlgn3R451C tissues using an Ussing chamber set-up. The number of cecal patches in fresh tissue samples were assessed and key immune populations including gut macrophages and dendritic cells were visualised using immunofluorescence. Nlgn3R451C mice displayed accelerated cecal motor complexes and reduced cecal weight in comparison to wildtype littermates. Nlgn3R451C mice also demonstrated reduced neurally-evoked cecal secretion in response to the nicotinic acetylcholine receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP), but permeability was unchanged. We observed an increase in the number of cecal patches in Nlgn3R451C mice, however the cellular morphologies of key immune populations studied were not significantly altered. We show that the R451C nervous system mutation leads to cecal dysmotility, impaired secretion, and neuro-immune alterations. Together, these results suggest that the R451C mutation disrupts the gut-brain axis with GI dysfunction in autism.


Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Autistic Disorder/genetics , Autistic Disorder/metabolism , Cecum/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Lymphoid Tissue/metabolism , Neurons/metabolism
13.
Cell Rep Med ; 4(7): 101111, 2023 07 18.
Article En | MEDLINE | ID: mdl-37467729

In a recent study, Lopera and colleagues investigate a person with extreme resilience to autosomal-dominant familial Alzheimer's disease, which they attribute to a rare variant in the RELN gene encoding reelin.1.


Alzheimer Disease , Extracellular Matrix Proteins , Humans , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Serine Endopeptidases/genetics , Alzheimer Disease/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Brain/metabolism
14.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37446152

Liver sinusoidal endothelial cells (LSECs) control clearance of Transforming growth factor, beta-induced, 68kDa (TGFBi) and Periostin (POSTN) through scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2). Stabilin inhibition can ameliorate atherosclerosis in mouse models, while Stabilin-double-knockout leads to glomerulofibrosis. Fibrotic organ damage may pose a limiting factor in future anti-Stabilin therapies. While Stab1-deficient (Stab1-/-) mice were shown to exhibit higher liver fibrosis levels upon challenges, fibrosis susceptibility has not been studied in Stab2-deficient (Stab2-/-) mice. Wildtype (WT), Stab1-/- and Stab2-/- mice were fed experimental diets, and local ligand abundance, hepatic fibrosis, and ligand plasma levels were measured. Hepatic fibrosis was increased in both Stab1-/- and Stab2-/- at baseline. A pro-fibrotic short Methionine-Choline-deficient (MCD) diet induced slightly increased liver fibrosis in Stab1-/- and Stab2-/- mice. A Choline-deficient L-amino acid-defined (CDAA) diet induced liver fibrosis of similar distribution and extent in all genotypes (WT, Stab1-/- and Stab2-/-). A hepatic abundance of Stabilin ligand TGFBi correlated very highly with liver fibrosis levels. In contrast, plasma levels of TGFBi were increased only in Stab2-/- mice after the CDAA diet but not the MCD diet, indicating the differential effects of these diets. Here we show that a single Stabilin deficiency of either Stab1 or Stab2 induces mildly increased collagen depositions under homeostatic conditions. Upon experimental dietary challenge, the local abundance of Stabilin ligand TGFBi was differentially altered in Stabilin-deficient mice, indicating differentially affected LSEC scavenger functions. Since anti-Stabilin-directed therapies are in clinical evaluation for the treatment of diseases, these findings bear relevance to treatment with novel anti-Stabilin agents.


Endothelial Cells , Liver Cirrhosis , Mice , Animals , Endothelial Cells/metabolism , Ligands , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver/metabolism , Methionine/metabolism , Transforming Growth Factors/metabolism , Choline/metabolism , Mice, Inbred C57BL , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism
15.
Cereb Cortex ; 33(15): 9376-9386, 2023 07 24.
Article En | MEDLINE | ID: mdl-37288494

Reelin is a large extracellular matrix protein abundantly expressed in the developing neocortex of mammals. During embryonic and early postnatal stages in mice, Reelin is secreted by a transient neuronal population, the Cajal-Retzius neurons (CRs), and is mostly known to insure the inside-out migration of neurons and the formation of cortical layers. During the first 2 postnatal weeks, CRs disappear from the neocortex and a subpopulation of GABAergic neurons takes over the expression of Reelin, albeit in lesser amounts. Although Reelin expression requires a tight regulation in a time- and cell-type specific manner, the mechanisms regulating the expression and secretion of this protein are poorly understood. In this study, we establish a cell-type specific profile of Reelin expression in the marginal zone of mice neocortex during the first 3 postnatal weeks. We then investigate whether electrical activity plays a role in the regulation of Reelin synthesis and/or secretion by cortical neurons during the early postnatal period. We show that increased electrical activity promotes the transcription of reelin via the brain-derived neurotrophic factor/TrkB pathway, but does not affect its translation or secretion. We further demonstrate that silencing the neuronal network promotes the translation of Reelin without affecting the transcription or secretion. We conclude that different patterns of activity control various stages of Reelin synthesis, whereas its secretion seems to be constitutive.


Neocortex , Animals , Mice , Neocortex/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Mammals/metabolism
16.
Cell Signal ; 109: 110763, 2023 09.
Article En | MEDLINE | ID: mdl-37315752

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Extracellular Matrix Proteins , Serine Endopeptidases , Mice , Animals , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Extracellular Matrix Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , HEK293 Cells , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Disease Models, Animal , Luciferases/metabolism , Cognition , Receptors, LDL/metabolism
17.
Nat Commun ; 14(1): 3770, 2023 06 24.
Article En | MEDLINE | ID: mdl-37355690

De novo mutations and copy number deletions in NRXN1 (2p16.3) pose a significant risk for schizophrenia (SCZ). It is unclear how NRXN1 deletions impact cortical development in a cell type-specific manner and disease background modulates these phenotypes. Here, we leveraged human pluripotent stem cell-derived forebrain organoid models carrying NRXN1 heterozygous deletions in isogenic and SCZ patient genetic backgrounds and conducted single-cell transcriptomic analysis over the course of brain organoid development from 3 weeks to 3.5 months. Intriguingly, while both deletions similarly impacted molecular pathways associated with ubiquitin-proteasome system, alternative splicing, and synaptic signaling in maturing glutamatergic and GABAergic neurons, SCZ-NRXN1 deletions specifically perturbed developmental trajectories of early neural progenitors and accumulated disease-specific transcriptomic signatures. Using calcium imaging, we found that both deletions led to long-lasting changes in spontaneous and synchronous neuronal networks, implicating synaptic dysfunction. Our study reveals developmental-timing- and cell-type-dependent actions of NRXN1 deletions in unique genetic contexts.


Schizophrenia , Humans , Schizophrenia/genetics , Organoids , Prosencephalon , Cytoplasm , Proteasome Endopeptidase Complex , Calcium-Binding Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Cell Adhesion Molecules, Neuronal/genetics
18.
Aging Cell ; 22(9): e13914, 2023 09.
Article En | MEDLINE | ID: mdl-37357460

Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are two major scavenger receptors of liver sinusoidal endothelial cells that mediate removal of diverse molecules from the plasma. Double-knockout mice (Stab-DKO) develop impaired kidney function and a decreased lifespan, while single Stabilin deficiency or therapeutic inhibition ameliorates atherosclerosis and Stab1-inhibition is subject of clinical trials in immuno-oncology. Although POSTN and TFGBI have recently been described as novel Stabilin ligands, the dynamics and functional implications of these ligands have not been comprehensively studied. Immunofluorescence, Western Blotting and Simple Western™ as well as in situ hybridization (RNAScope™) and qRT-PCR were used to analyze transcription levels and tissue distribution of POSTN and TGFBI in Stab-KO mice. Stab-POSTN-Triple deficient mice were generated to assess kidney and liver fibrosis and function in young and aged mice. TGFBI and POSTN protein accumulated in liver tissue in Stab-DKO mice and age-dependent in glomeruli of Stabilin-deficient mice despite unchanged transcriptional levels. Stab-POSTN-Triple KO mice showed glomerulofibrosis and a reduced lifespan comparable to Stab-DKO mice. However, alterations of the glomerular diameter and vascular density were partially normalized in Stab-POSTN-Triple KO. TGFBI and POSTN are Stabilin-ligands that are deposited in an age-dependent manner in the kidneys and liver due to insufficient scavenging in the liver. Functionally, POSTN might partially contribute to the observed renal phenotype in Stab-DKO mice. This study provides details on downstream effects how Stabilin dysfunction affects organ function on a molecular and functional level.


Cell Adhesion Molecules, Neuronal , Endothelial Cells , Animals , Mice , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Endothelial Cells/metabolism , Kidney/metabolism , Ligands , Liver/metabolism , Mice, Knockout , Receptors, Scavenger/metabolism
19.
Biochem Biophys Res Commun ; 664: 117-127, 2023 07 05.
Article En | MEDLINE | ID: mdl-37146559

Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Reelin, an extracellular matrix protein, and its effector protein Disabled1 (DAB1) have been linked to cellular events and retinal development. However, whether and how Reelin/DAB1 signaling causes DR remains to be investigated. In our study, significantly increased expression of Reelin, very low density lipoprotein receptor (VLDLR), ApoE receptor 2 (ApoER2) and phosphorylated DAB1 in retinas of streptozotocin (STZ)-induced DR mouse model was observed, along with enhanced expression of proinflammatory factors. Similar results are confirmed in high glucose (HG)-treated human retinal pigment epithelium cell line ARPE-19. Surprisingly, dysregulated tripartite motif-containing 40 (TRIM40), an E3 ubiquitin ligase, is found to be involved in DR progression by bioinformatic analysis. We observe a negative correlation between TRIM40 and p-DAB1 protein expression levels under HG conditions. Importantly, we find that TRIM40 over-expression markedly ameliorates HG-induced p-DAB1, PI3K, p-protein B kinase (AKT) and inflammatory response in HG-treated cells, but dose not affect Reelin expression. Of note, Co-IP and double immunofluorescence identify an interaction between TRIM40 and DAB1. Furthermore, we show that TRIM40 enhances K48-linked polyubiquitination of DAB1, thereby promoting DAB1 degradation. Finally, promoting TRIM40 expression by intravenous injection of the constructed adeno-associated virus (AAV-TRIM40) markedly ameliorates DR phenotypes in STZ-treated mice, as indicated by the decreased blood glucose and glycosylated hemoglobin (HbAlc) levels, and increased hemoglobin contents. Additionally, diabetes-related elevation of acellular capillaries was also meliorated in mice over-expressing TRIM40. The electroretinogram (ERG) deficits were strongly rescued in mice receiving AAV-TRIM40 injection. Moreover, AAV-TRIM40 attenuates the inflammation and p-DAB1 expression in retinal tissues of STZ-treated mice. Collectively, our findings disclose a mechanism through which TRIM40 limits DAB1 stability under physiological conditions and reveals TRIM40 as a potential therapeutic target for the intervention of Reelin/DAB1 signaling, contributing to DR treatment.


Diabetic Retinopathy , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Inflammation , Nerve Tissue Proteins/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Signal Transduction
20.
Nature ; 618(7967): 1065-1071, 2023 Jun.
Article En | MEDLINE | ID: mdl-37198476

Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.


Cell Adhesion Molecules, Neuronal , Cell Death , Cell Membrane , Nerve Growth Factors , Animals , Humans , Mice , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/ultrastructure , Cell Membrane/metabolism , Cell Membrane/pathology , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Nerve Growth Factors/chemistry , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/ultrastructure , Mutagenesis, Site-Directed , Biopolymers/chemistry , Biopolymers/genetics , Biopolymers/metabolism
...